Achu, D. F. (2008). Application of GIS in Temporal and Spatial Analyses of Dengue Fever Outbreak: Case of Rio de Janeiro, Brazil. Master’s Thesis, Linköpings Universitet.
Allen, T. R., & Wong, D. W. (2006). Exploring GIS, spatial statistics and remote sensing for risk assessment of vector-borne diseases: a West Nile virus example. Int. J. Risk Assessment and Management, 6, 253-275.
Alharthy, A. (2008). Effective distribution of vector population surveillance devices through spatial analysis in Jeddah. 6. Retrieved from www.meauc.com/presents/T283.pdf
Andrianasolo, H., Nakhapakorn, K., & Gonzalez, J. P. (2000). Remote sensing and GIS modelling applied to viral disease in Nakhonpathom Province, Thailand. Paper presented at the Proceedings of the IGARSS 2000- IEEE 2000 International Geoscience and Remote Sensing Symposium, Taking the Pulse of the Planet, Hawaii - USA.
Bautista, C. T., Chan, A. S. T., Ryan, J. R., Calampa, C., Roper, M. H., Hightower, A. W., & Magill, A. J. (2006). Epidemiology and spatial analysis of malaria in the Northern Peruvian Amazon. American Journal of Tropical Medicine and Hygiene, 75(6), 1216-1222.
Bohra, A., & Andrianasolo, H. (2001). Application of GIS in Modeling Dengue Risk Based on Sociocultural Data: Case of Jalore, Rajasthan, India. Dengue Bulletin, 5. 91-102
Chaikaew, N., Tripathi, N. K., & Souris, M. (2009). Exploring spatial patterns and hotspots of diarrhea in Chiang Mai, Thailand. International Journal of Health Geographics, 8(36). doi: 10.1186/1476-072x-8-36
Eisen, L., & Lozano-Fuentes, S. (2009). Use of mapping and spatial and space-time modeling approaches in operational control of Aedes aegypti and dengue. Plos Neglected Tropical Diseases, 3(4). doi: 10.1371/journal.pntd.0000411
Ernst, K. C., Adoka, S. O., Kowuor, D. O., Wilson, M. L., & John, C. C. (2006). Malaria hotspot areas in a highland Kenya site are consistent in epidemic and non-epidemic years and are associated with ecological factors. Malaria Journal, 5. doi: 10.1186/1475-2875-5-78.
Hakre, S., Masuoka, P., Vanzie, E., & Roberts, D. R. (2004). Spatial correlations of mapped malaria rates with environmental factors in Belize, Central America. International Journal of Health Geographics, 3(6). doi: doi:10.1186/1476-072X-3-6
Khormi, H., Kumar, L. (2011a). Identifying and visualizing spatial patterns and hot spots of clinically-confirmed dengue fever cases and female Aedes aegypti mosquitoes in Jeddah, Saudi Arabia. Dengue Bulletin 35, 15-34
Khormi, H., & Kumar, L. (2011b). Modeling dengue fever risk based on socioeconomic parameters, nationality and age groups: GIS and remote sensing based case study. Science of the Total Environment, 409(22), 4713-4719.
Khormi, H., Kumar, L. (2012). The importance of appropriate temporal and spatial scales for dengue fever control and management . Science of the Total Environment 430, 144–149
Khormi, H., Kumar, L., & Elzahrany, R. (2011). Modeling spatio-temporal risk changes in the incidence of dengue fever in Saudi Arabia: a geographical information system case study. Geospatial Health, 6(1), 77-84.
Kitron, U. (2000). Risk maps: Transmission and burden of vector borne diseases. Parasitology Today, 16(8), 324-325.
Lagrotta, M. T., Silva, W. D., & Souza-Santos, R. (2008). Identification of key areas for Aedes aegypti control through geoprocessing in Nova Iguacu, Rio de Janeiro state, Brazil. Cadernos De Saude Publica, 24(1), 70-80.
Omumbo, J., Ouma, J., Rapuoda, B., Craig, M. H., le Sueur, D., & Snow, R. W. (1998). Mapping malaria transmission intensity using geographical information systems (GIS): an example from Kenya. Ann Trop Med Parasitol, 92(1), 7-21.
Pratt, M. (2003). Down-to-earth approach jumpstarts GIS for dengue outbreak The Magazine foe ESRI Software Users (Vol. 6, pp. 2). USA: ESRI.
Ratana, S., Somboon, P., Watcharee, A., Saravudh, S., & Mayuna, S. (2004). The Eographic Information System As An Epidemiological Tool In The Surveillance Of Dengue Virus-Infected Aedes Mosquitos. 35. 918-926.
Rochlin, I., Iwanejko, T., Dempsey, M. E., & Ninivaggi, D. V. (2009). Geostatistical evaluation of integrated marsh management impact on mosquito vectors using before-after-control-impact (BACI) design. International Journal of Health Geographics, 8, 1-20. doi: 10.1186/1476-072x-8-35.
Siqueira, J. B., Maciel, I. J., Barcellos, C., Souza, W. V., Carvalho, M. S., Nascimento, N. E., . . . Martelli, C. M. T. (2008). Spatial point analysis based on dengue surveys at household level in central Brazil. BMC Public Health, 8. doi: 10.1186/1471-2458-8-361.
Tan, A., & Song, R. (2000). The use of GIS in ovitrap monitoring for dengue control in Singapore. Dengue Bulletin, 24, 110-116.